1. A graph of $f^{\prime}(x)$, the derivative of $f(x)$, is given below.

a) On what interval(s) is $f(x)$ increasing? Decreasing? Explain.
b) Determine where any relative extrema will occur. Justify your reasoning.
2. The graph at the right is the derivative of a function f.
a) Find where f is increasing or decreasing. Justify your answer.
b) Find all relative maximum(s) or minimum(s). Justify your answer.
c) If $f(-3)=2$, sketch a possible graph of f on the same axes.

3. Sketch a graph of the function whose derivative satisfies the properties given in the table below.

x	$(-\infty,-1)$	-1	$(-1,1)$	1	$(1,3)$	3	$(3, \infty)$
$f^{\prime}(x)$	positive	0	negative	0	positive	0	negative

4. The accompanying figure shows the graph of the derivative of a function f. The domain of f is the closed interval $[-3,3]$.

a. Identify and classify the x-coordinate of each critical value. Justify your answers.
b. Determine the interval(s) on which f is increasing. Justify.
c. Determine the inverval(s) on which f is concave up and concave down. Justify your answers.

The graph of f is given below. Sketch a possible graph of f ' and f ".
5.

6.

7.

8.

9.

The graph of f ' is given below. Sketch a possible graph of \boldsymbol{f}.
10.

12.

11.

13.

