1.Find $\frac{\mathrm{dS}}{\mathrm{dt}}$ if $\mathrm{S}=4 \pi \mathrm{r}^{2}$. 2. Find $\frac{\mathrm{dV}}{\mathrm{dt}}$ if $\mathrm{V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}$. 3. Find $\frac{\mathrm{dz}}{\mathrm{dt}}$ if $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{z}^{2}$.
4. If $x=4, y=3, \frac{d y}{d t}=-2$, and $\frac{d x}{d t}=0$, then find $\frac{d z}{d t}$ for $x^{2}+y^{2}=z^{2}$.
5. If $\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}$ and $\frac{\mathrm{dV}}{\mathrm{dt}}=3 \pi$ and $\mathrm{r}=6$, then find $\frac{\mathrm{dr}}{\mathrm{dt}}$
6. A ladder 15 ft long is leaning against a building. The bottom of the ladder is moved away from the building at the constant rate of $\frac{1}{2} \frac{\mathrm{ft}}{\mathrm{sec}}$. Find the rate at which the ladder is falling down the building when the ladder is 9 ft from the building.
7.Gas is escaping from a spherical balloon at the rate of $2 \mathrm{ft}^{3} / \mathrm{min}$. How fast is the surface area shrinking when the radius is 12 ft ?
8. Water is running out a conical funnel at the rate of $1 \mathrm{in}^{3} / \mathrm{sec}$. If the radius of the base of the funnel is 4 inches and the altitude is 8inches, find the rate at which the water level is dropping when it is 2 inches from the top.
9. Sand falling from a chute forms a conical pile whose altitude is always equal to $4 / 3$ the radius of the base. (a) How fast is the volume increasing when the radius of the base is 3 ft and is increasing at a rate of $3 \mathrm{in} / \mathrm{min}$? (b) How fast is the radius increasing when it is 6 ft and the volume is increasing at the rate of $24 \mathrm{ft}^{3} / \mathrm{min}$?
10. The radius of a sphere is r in t seconds. Find the radius when the rates of increasing of the surface area and radius are numerically equal.
11. A rectangular trough is 8 ft long, 2 ft across the top, and 4 feet deep. If water flows in at a rate of $2 \mathrm{ft}^{3}$ $/ \mathrm{min}$, how fast is the surface rising when the water is 1 ft deep?
12. A ladder 20ft long leans against a house. Find the rate at which the top of the ladder is moving downward if its foot is 12 ft from the house and moving away at rate of $2 \mathrm{ft} / \mathrm{sec}$.
13. A boy flying a kite at a height of 150 ft . If the kite moves horizontally away from the boy at $20 \mathrm{ft} / \mathrm{sec}$, how fast is the string being paid out when the kite is 250 ft from him?
14.A liquid is flowing into a vertical cylindrical tank of radius 6 ft at a rate of $8 \mathrm{ft}^{3} / \mathrm{min}$. How fast is the surface rising?
15. Ship A is 15 miles east of O and moving west at 20 miles/hour; ship B is 60 miles south of O and moving north at 15 miles/hour. A) Are they approaching or separating after 1 hour and at what rate? B) After 3 hours ? C) When are they nearest one another?

1. $\frac{\mathbf{d} S}{\mathbf{d t}}=8 \pi \mathrm{r} \frac{\mathbf{d} r}{\mathbf{d t}} \quad$ 2. $\frac{\mathrm{dV}}{\mathrm{dt}}=\frac{1}{3} \pi \mathrm{r}^{2} \frac{\mathbf{d} h}{\mathbf{d t}}+\frac{2}{3} \pi \mathrm{rh} \frac{\mathbf{d} r}{\mathbf{d t}} \quad 3 \cdot \frac{\mathrm{dz}}{\mathrm{dt}}=\frac{\mathrm{x}\left(\frac{\mathrm{dx}}{\mathrm{dt}}\right)+\mathrm{y}\left(\frac{\mathrm{dy}}{\mathrm{dt}}\right)}{\mathrm{z}} \quad 4 .-\frac{6}{5} \quad$ 5. $\frac{1}{48}$
$6.3 / 8 \mathrm{ft} / \mathrm{sec} 7 . \quad \frac{-1}{3} \frac{\mathrm{ft}^{2}}{\min } \quad$ 8. $-\frac{1}{9 \pi} \mathrm{in} . / \mathrm{sec} . \quad 9$. (a) $3 \pi \mathrm{ft}^{3} / \mathrm{min} \quad$ (b) $\frac{1}{2 \pi} \mathrm{ft} / \mathrm{min}$
2. $\frac{1}{8 \pi}$ in. \quad 11. $\frac{1}{8} \mathrm{ft} / \mathrm{min} \quad$ 12. $\frac{3}{2} \mathrm{ft} / \mathrm{sec} \quad 13.16 \mathrm{ft} / \mathrm{sec}$
3. $\frac{2}{9 \pi} \mathrm{ft} / \mathrm{min} \quad$ 15. (a) approaching $\frac{115}{\sqrt{82}} \mathrm{mi} / \mathrm{hr} \quad$ (b) separating $\frac{9 \sqrt{10}}{2} \mathrm{mi} / \mathrm{h} \quad$ (c) 1 hr 55
min
