\qquad
Evaluate the function for the given value of x.
$f(x)=\left\{\begin{array}{l}3, \text { if } x \leq 0 \\ 2, \text { if } x>0\end{array}\right.$
$g(x)=\left\{\begin{array}{l}x+5, \text { if } x \leq 3 \\ 2 x-1, \text { if } x>3\end{array}\right.$
$h(x)=\left\{\begin{array}{l}\frac{1}{2} x-4, \text { if } x \leq-2 \\ 3-2 x, \text { if } x>-2\end{array}\right.$

1. $f(2)$
2. $f(-4)$
3. $f(0)$
4. $f\left(\frac{1}{2}\right)$
5. $g(7)$
6. $g(0)$
7. $g(-1)$
8. $g(3)$
9. $h(-4)$
10. $h(-2)$
11. $h(-1)$
12. $h(6)$

Match the piecewise function with its graph. Write the answer next to the problem number.
13. $f(x)=\left\{\begin{array}{l}x-4, \text { if } x \leq 1 \\ 3 x, \text { if } x>1\end{array}\right.$
16. $f(x)=\left\{\begin{array}{l}2 x+3, \text { if } x \geq 0 \\ x+4, \text { if } x<0\end{array}\right.$
A.

14. $f(x)=\left\{\begin{array}{l}x+4, \text { if } x \leq 0 \\ 2 x+4, \text { if } x>0\end{array}\right.$
15. $f(x)=\left\{\begin{array}{l}3 x-2, \text { if } x \leq 1 \\ x+2, \text { if } x>1\end{array}\right.$
17. $f(x)=\left\{\begin{array}{l}3 x-1, \text { if } x \geq-1 \\ -5, \text { if } x<-1\end{array}\right.$
18. $f(x)=\left\{\begin{array}{l}-3 x-1, \text { if } x \leq 1 \\ -5, \text { if } x>1\end{array}\right.$
B.

C.

D.

E.

F.

Graph the function.
19.
$f(x)=\left\{\begin{array}{l}x+3, \text { if } x \leq 0 \\ 2 x, \text { if } x>0\end{array}\right.$

20.
$f(x)=\left\{\begin{array}{l}x+1, \text { if } x<0 \\ -x+1, \text { if } 0 \leq x \leq 2 \\ x-1, \text { if } x>2\end{array}\right.$

21.
$f(x)=\left\{\begin{array}{l}2, \text { if } x \leq-3 \\ -1, \text { if }-3<x<3 \\ 3, \text { if } x \geq 3\end{array}\right.$

Practicing our Piecewise (again!)

Name
Date \qquad
Write the equation of the piecewise functions below.
22.

23.

24.

25.

26.

27. Use the graphs of f and g to answer the questions.
(a) $(g-f)(10)$
(b) $(f g)(6)$
(c) $g\left(f^{-1}(-3)\right)$

(d) $3 g(2 f(x)+1)$ at $x=4$
(e) On what interval(s) is $f(x)$ increasing?
(f) What is the absolute maximum value of $\mathrm{g}(\mathrm{x})$?

