Calculus 1 WKST/Key- Implicit Differentiation Name:_____

Date:_____

On problems 1 – 3, find $\frac{dy}{dx}$. 1. $x^3 + xy + y^3 = 1$ 2. $y - x \sin y = 3$

3.
$$x + \tan(xy) = 0$$

4. If $y = xy + x^2 + 1$, find $\frac{dy}{dx}$ when x = -1.

5. Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$, given $y^2 + 2y = 2x + 1$.

6. If $x^3 + y^3 = 8$, show that the second derivative of y with respect to x is $-\frac{16x}{y^5}$.

- 7. Consider the curve defined by the equation $y + \cos y = x + 1$ for $0 \le y \le 2\pi$.
 - (a) Find $\frac{dy}{dx}$ in terms of y. (b) Write an equation for each vertical tangent to the curve. (c) Find $\frac{d^2y}{dx^2}$ in terms of y.

8. Consider the curve $y^2 = 4 + x$ and the chord AB joining points A(-4, 0) and B(0, 2) on the curve. Find the *x*- and *y*-coordinates of the point on the curve where the tangent line is parallel to chord AB.

9. The function f is differentiable for all real numbers. The point $\left(3, \frac{1}{4}\right)$ is on the graph of y = f(x), and the slope at each point (x, y) on the graph is given by $\frac{dy}{dx} = y^2(6-2x)$. Find $\frac{d^2y}{dx^2}$, and evaluate it at the point $\left(3, \frac{1}{4}\right)$.

- 10. Consider the curve given by $xy^2 x^3y = 6$.
 - (a) Find $\frac{dy}{dx}$.
 - (b) Find all points on the curve whose *x*-coordinate is 1, and write an equation for the tangent line to the curve at each of these points.
 - (c) Find the *x*-coordinate of each point on the curve where the tangent line is vertical.

Answers to Worksheet on Implicit Differentiation

1.
$$\frac{-3x^2 - y}{x + 3y^2}$$

2. $\frac{\sin y}{1 - x \cos y}$
3. $\frac{-1 - y \sec^2(xy)}{x \sec^2(xy)}$ or $\frac{-\cos^2(xy) - y}{x}$
4. $\frac{y + 2x}{1 - x}, -\frac{1}{2}$
5. $\frac{1}{y + 1}, \frac{-1}{(y + 1)^3}$
6. $-\frac{x^2}{y^2}, -\frac{16x}{y^5}$
7. (a) $\frac{1}{1 - \sin y}, y \neq \frac{\pi}{2}$
(b) $x = \frac{\pi}{2} - 1$
(c) $\frac{\cos y}{(1 - \sin y)^3}$
8. (-3, 1)
9. $-\frac{1}{8}$
10. (a) $\frac{3x^2y - y^2}{2xy - x^3}$
(b) (1, 3), $y = 3$; $(1, -2), y + 2 = 2(x - 1)$
(c) $x = 0$ but no such point on the curve;
 $x = -\frac{10}{576}$ $y = \frac{5}{18}$