Logarithms are similar to radicals in that knowing what the question is asking makes the problem easier. Although this is a topic that is completely new to Algebra II students, Logarithms are simple. For example, the question $\log _{3} 27=$ is asking "To what power do you raise 3 to get 27?" In this particular problem, 3 is the base of the logarithm. When reading the logarithm, it is read "Log base 3 of 27 is..."

Properties of Simple Logarithms

$\log _{a} 1=0$
$\log _{a} a=1$
$\log _{a} a^{x}=x$ and $a^{\log _{a} x}=x \quad$ (inverse property)
If $\log _{a} x=\log _{a} y$ then $x=y$

Properties of Natural Logarithms

$$
\begin{aligned}
& \ln 1=0 \\
& \ln e=1 \\
& \ln e^{x}=x \quad \text { and } \quad e^{\ln x}=x \quad \text { (inverse property) } \\
& \text { If } \ln x=\ln y \text { then } x=y
\end{aligned}
$$

A standard logarithm can have any positive number as its base except 1, whereas a natural log is always base e. Since the natural log is always base e, it will be necessary to use a calculator to evaluate natural logs unless one of the first three examples of the properties of natural logs is used. For anything such as $\ln 2=$, a calculator must be used.

When dealing with logarithms, switching between exponential and Logarithmic form is often necessary.

Logarithmic form

$\log _{a} b=c$

Exponential Form

$a^{c}=b$

Write each of the following in exponential form.
A) $\log _{4} 16=2$
B) $\log _{9} 3=\frac{1}{2}$
C) $\log _{9} 27=\frac{3}{2}$
E) $\log _{4} \frac{1}{16}=-2$

Write each of the following in logarithmic form.
A) $3^{4}=81$
B) $16^{1 / 4}=2$
C) $36^{-1 / 2}=\frac{1}{6}$
D) $16^{5 / 4}=32$

Simplifying Logarithms

Evaluate each of the following logarithms without the use of a calculator.
A) $\log _{3} 81=$
B) $\log _{4} \frac{1}{2}=$
C) $\log _{12} 144=$
D) $\log _{6} \frac{1}{36}=$
E) $\log _{\frac{2}{3}} \frac{9}{4}=$
F) $\log _{0.25} 4=$
G) $\log _{3}-3=$
H) $\log _{8} 4=$
I) $\log _{81} \frac{1}{27}=$
J) $\log _{\frac{1}{16}} 32=$
K) $\log _{4} 0=$
L) $\log _{10} 1=$
М) $\log _{4} \frac{1}{8}=$
N) $\log _{27} \frac{1}{3}=$
O) $\log _{9} 3=$
P) $\log _{6} 6^{3 x}=$
Q) $\log _{36} \frac{1}{6}=$
R) $\log _{128} 2=$
S) $\log _{\frac{1}{4}} 16=$
T) $\log _{z} z^{2 x}=$
U) $\ln e^{12}=$
V) $3^{\log _{3} 5}=$
W) $\ln 1=$
X) $e^{\ln 4 x}=$
Y) $\log _{2} 16 \sqrt{2}=$
Z) $\log _{3} \sqrt[5]{9}=$
c) $\log _{\frac{5}{6}} \sqrt[3]{\frac{36}{25}}=$
d) $e^{\ln 5 x^{2}}=$
a) $\log _{3} 9 \sqrt[3]{3}=$
b) $\log _{5} \frac{1}{\sqrt[3]{25}}=$

