Logarithms are similar to radicals in that knowing what the question is asking makes the problem easier. Although this is a topic that is completely new to Algebra II students, Logarithms are simple. For example, the question $\log_3 27 = is$ asking "To what power do you raise 3 to get 27?" In this particular problem, 3 is the base of the logarithm. When reading the logarithm, it is read "Log base 3 of 27 is..."

Properties of Simple Logarithms

 $\log_{a} 1 = 0$ $\log_{a} a = 1$ $\log_{a} a^{x} = x \text{ and } a^{\log_{a} x} = x \text{ (inverse property)}$ If $\log_{a} x = \log_{a} y$ then x = y

Properties of Natural Logarithms

 $\ln 1 = 0$ $\ln e = 1$ $\ln e^{x} = x \quad and \quad e^{\ln x} = x \quad (inverse \ property)$ If $\ln x = \ln y \quad then \quad x = y$

A standard logarithm can have any positive number as its base except 1, whereas a natural log is <u>always</u> base e. Since the natural log is always base e, it will be necessary to use a calculator to evaluate natural logs unless one of the first three examples of the properties of natural logs is used. For anything such as $\ln 2 =$, a calculator must be used.

When dealing with logarithms, switching between exponential and Logarithmic form is often necessary.

Logarithmic form	Exponential Form
$\log_a b = c$	$a^{c} = b$

Write each of the following in exponential form.

A) $\log_4 16 = 2$ **B)** $\log_9 3 = \frac{1}{2}$ **C)** $\log_9 27 = \frac{3}{2}$ **E)** $\log_4 \frac{1}{16} = -2$

Write each of the following in logarithmic form.

A) $3^4 = 81$ **B)** $16^{1/4} = 2$ **C)** $36^{-1/2} = \frac{1}{6}$ **D)** $16^{5/4} = 32$

Simplifying Logarithms

Evaluate each of the following logarithms without the use of a calculator.

B) $\log_4 \frac{1}{2} =$ **C**) $\log_{12} 144 =$ **D**) $\log_6 \frac{1}{36} =$ **A)** $\log_3 81 =$ **E**) $\log_{\frac{2}{3}} \frac{9}{4} =$ **F**) $\log_{0.25} 4 =$ **G**) $\log_3 - 3 =$ **H**) $\log_8 4 =$ I) $\log_{81} \frac{1}{27} =$ **J**) $\log_{\frac{1}{16}} 32 =$ **K**) $\log_4 0 =$ **L**) $\log_{10} 1 =$ **M**) $\log_4 \frac{1}{8} =$ **N**) $\log_{27} \frac{1}{3} =$ **O**) $\log_9 3 =$ **P**) $\log_6 6^{3x} =$ **Q**) $\log_{36} \frac{1}{6} =$ **S**) $\log_{\frac{1}{4}} 16 =$ **T**) $\log_z z^{2x} =$ **R**) $\log_{128} 2 =$ $\mathbf{X}) \quad e^{\ln 4x} =$ **U**) $\ln e^{12} =$ **V**) $3^{\log_3 5} =$ W) $\ln 1 =$

Y)
$$\log_2 16\sqrt{2} =$$
 Z) $\log_3 \sqrt[5]{9} =$ **a**) $\log_3 9\sqrt[3]{3} =$ **b**) $\log_5 \frac{1}{\sqrt[3]{25}} =$

c)
$$\log_{\frac{5}{6}} \sqrt[3]{\frac{36}{25}} =$$
 d) $e^{\ln 5x^2} =$