LESS	Solving Radical Equat	tions
	Practice and Problem Solv	ing: A/B
Solve each equation.		
1.	$\sqrt{x+6} = 7$	2. $\sqrt{5x} = 10$
3.	$\sqrt{2x+5} = \sqrt{3x-1}$	$4. \sqrt{x+4} = 3\sqrt{x}$
5.	$\sqrt[3]{x-6} = \sqrt[3]{3x+24}$	6. $3\sqrt[3]{x} = \sqrt[3]{7x+5}$
7.	$\sqrt{-14x+2} = x-3$	8. $(x+4)^{\frac{1}{2}}=6$
9.	$4(x-3)^{\frac{1}{2}}=8$	10. $4(x-12)^{\frac{1}{3}} = -16$
11.	$\sqrt{3x+6}=3$	12. $\sqrt{x-4} + 3 = 9$
13.	$\sqrt{x+7} = \sqrt{2x-1}$	14. $\sqrt{2x-7} = 2x$

Date Class

Solve.

15. A biologist is studying two species of animals in a habitat. The population,

 p_1 , of one of the species is growing according to $p_1 = 500t^{\frac{3}{2}}$ and the population, p_2 , of the other species is growing according to $p_2 = 100t^2$, where time, *t*, is measured in years. After how many years will the populations of the two species be equal?

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

Reading Strategies

- 1. Quotient of Powers Property
- 2. Product Property of Roots
- 3. Power of a Product Property
- 4. Power of a Quotient Property

Success for English Learners

- 1. The expression had $x^{\frac{3}{4}}$ in the numerator
 - and $x^{\overline{2}}$ in the denominator. The Quotient of Powers Property combines these to $x^{\frac{3}{4}-\frac{1}{2}}$.
- 2. Possible answer: By writing the radical as a rational exponent, I could simplify the exponent to 2, so the expression was easy to simplify.

LESSON 11-3

Practice and Problem Solving: A/B

1. x = 432. x = 203. x = 64. $x = \frac{1}{2}$ 5. x = -156. $x = \frac{1}{4}$ 7. No solutions, since both -1 and -7 are extraneous. 8. x = 329. *x* = 7 10. x = -5211. x = 112. x = 4013. *x* = 8 14. no solution 15.25 years Practice and Problem Solving: C 1. x = 312. x = 473. x = 74. x = 9

5. x = -2 and x = 16. x = 57. $x = \frac{5}{2}$ 8. x = 9; x = -2 is an extraneous solution. 9. x = 110. x = 511. x = 1612. x = -2113. x = 414. x = 12315. $v = \frac{\sqrt{3}}{2}c$

Practice and Problem Solving: Modified

- 1. $\sqrt{x} = 6$ 2. $\sqrt{3x} = x - 8$ 3. $\sqrt{2x+1} = 3x+17$ 4. 2: x = 165. 4; x = 6912 6. 3; *x* = 63 7. x = 2; no extraneous solutions 8. x = 1, x = 6; x = 1 is an extraneous solution. 9. x = 2310. x = 911. x = 2612. x = 2813. Ainsley is correct. Ben forgot to check for extraneous solutions. The only solution to the equation is x = 2. **Reading Strategies** 1. $\sqrt{x} = -3$ 2. $\sqrt{x+2} = 6$ 3. $\sqrt{x} = -2$ 4. $\sqrt{x} = 18$ 5. $\sqrt{x+6} = 2$
 - 5. $\sqrt{x} + 0 = 2$
 - 6. Third power

7. Second power

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.