Properties of Rational Exponents

Let a and b be real numbers and let m and n be rational numbers. The following properties have the same names as those listed on page 330, but now apply to rational exponents as illustrated.

Property

1. $a^{m} \cdot a^{n}=a^{m+n}$
2. $\left(a^{m}\right)^{n}=a^{m n}$
3. $(a b)^{m}=a^{m} b^{m}$
4. $a^{-m}=\frac{1}{a^{m}}, a \neq 0$
5. $\frac{a^{m}}{a^{n}}=a^{m-n}, a \neq 0$
6. $\left(\frac{a}{b}\right)^{m}=\frac{a^{m t}}{b^{m}}, b \neq 0 \quad\left(\frac{27}{64}\right)^{1 / 3}=\frac{27^{1 / 3}}{64^{1 / 3}}=\frac{3}{4}$

Use properties of exponents to simplify the following expressions.
a. $7^{1 / 4} \cdot 7^{1 / 2}=$
b. $\left(6^{1 / 2} \cdot 4^{1 / 3}\right)^{2}=$
c. $\left(4^{5} \cdot 3^{5}\right)^{-1 / 5}=$
d. $\frac{5}{5^{1 / 3}}=\frac{5^{1}}{5^{1 / 3}}=$
e. $\left(\frac{42^{1 / 3}}{6^{1 / 3}}\right)^{2}=$
g. $\frac{\sqrt[3]{x} \cdot \sqrt{x^{5}}}{\sqrt{25 x^{16}}}$
h. $12^{1 / 8} \cdot 12^{5 / 6}=$
i. $\quad\left(5^{1 / 3} \cdot \mathrm{x}^{1 / 4}\right)^{3}=$
j. $\quad\left(2^{6} \cdot 4^{6}\right)^{-1 / 6}=$
k. $\frac{10}{10^{2 / 5}}=$
I. $\left(\frac{56^{1 / 4}}{7^{1 / 4}}\right)^{5}$
$\left.\begin{array}{lll|l|}\text { RULE: } & \sqrt{x}=x^{1 / 2} & \sqrt[3]{x}=x^{1 / 3} & \sqrt[4]{x}=x^{1 / 4} \\ \hline n\end{array}\right)=x^{1 / n}$

EXAMPLES: $8^{1 / 3}=\sqrt[3]{8}=2 \quad 125^{1 / 3}=\sqrt[3]{125}=5$
Evaluate each of the following without the use of a calculator!

1. $100^{1 / 2}=$	2. $16^{1 / 4}=$	3. $100,000^{1 / 5}=$	4. $27^{1 / 3}=$
5. $81^{1 / 2}=$	6. $216^{1 / 3}=$	7. $144^{1 / 2}=$	$8 \cdot 1^{1 / 4}=$
9. $225^{1 / 2}=$	10. $49^{1 / 2}=$	$11 \cdot 1,000^{1 / 3}=$	$12 \cdot 25^{1 / 2}=$

RULE: $\quad x^{3 / 2}=\left(x^{1 / 2}\right)^{3}=(\sqrt{x})^{3}$

$$
x^{m / n}=(\sqrt[n]{x})^{m}
$$

EXAMPLES: $8^{2 / 3}=\left(8^{1 / 3}\right)^{2}=(\sqrt[3]{8})^{2}=(2)^{2}=4$

$$
25^{3 / 2}=(\sqrt{25})^{3}=(5)^{3}=125
$$

Evaluate each of the following without the use of a calculator!

1. $100^{3 / 2}=$	2. $16^{3 / 4}=$	3. $1000^{2 / 3}=$	4. $25^{3 / 2}=$
5. $8^{4 / 3}=$	6. $64^{2 / 3}=$	7. $64^{3 / 2}=$	$8 \cdot 81^{1 / 2}=$
9. $625^{3 / 4}=$	10. $49^{3 / 2}=$	$11 \cdot 32^{3 / 5}=$	$12 \cdot 121^{-1 / 2}=$

A negative exponent was slipped into that last problem! How did you deal with it?
RULE: $\quad x^{-2}=\frac{1}{x^{2}}$
$x^{-5}=\frac{1}{x^{5}}$
$x^{-n}=\frac{1}{x^{n}}$

EXAMPLES: $8^{-2}=\frac{1}{8^{2}}=\frac{1}{64}$ $25^{-3 / 2}=(\sqrt{25})^{-3}=(5)^{-3}=\frac{1}{5^{3}}=\frac{1}{125}$

Evaluate each of the following without the use of a calculator!

1. $10^{-2}=$	2. $16^{-1 / 2}=$	3. $1000^{-2 / 3}=$	$4.5^{-2}=$
5. $125^{-2 / 3}=$	6. $\left(\frac{1}{4}\right)^{-1 / 2}=$	$7.49^{-1 / 2}=$	$8.81^{-1 / 2}=$
$9.66^{-3}=$			

