1) Graph the equation lightly in pencil.
2) Use the restricted domain to determine which part of the line should stay and which part of the line should be erased.

- If the domain has x between two numbers, the graph will be a line segment (no arrows). Example: $-1 \leq x \leq 2$
- If the domain has $x \geq$ a number or $x \leq a$ number, the graph will be a ray (arrow on one end). Example: $x \geq 0$

3) Write the range in set builder notation.

Example 2: Graph the function $y=2 x-4$ with the Domain $=\{x \in \mathfrak{R} \mid x \geq 0\}$

Range: \qquad

Problem: Refer to the graph on the right.
Write the domain in which the function is/has:
a) increasing
b) decreasing
c) positive
d) negative
e) relative \min and relative max

\qquad Date: \qquad Period: \qquad
COMPOSITE FUNCTION WORKSHEET
Directions: Show all work for credit. Work must be neat and answer must be circled.
For 1-9: Let $f(x)=2 x-1, g(x)=3 x$, and $h(x)=x^{2}+1$. Compute the following:

1. $\mathrm{f}(\mathrm{g}(-3))$
2. $\mathrm{f}(\mathrm{h}(7))$
3. $(\mathrm{g} \circ \mathrm{h})(24)$
4. $\mathrm{f}(\mathrm{g}(\mathrm{h}(2)))$
5. $\mathrm{h}(\mathrm{g}(\mathrm{f}(5)))$
6. $\mathrm{g}(\mathrm{f}(\mathrm{h}(-6)))$
7. $f(x+1)$
8. g(3a)
9. $\mathrm{h}(\mathrm{x}-2)$

For 10-11: Let $f(x)=-3 x+7$ and $g(x)=2 x^{2}-8$. Compute the following:
10. $\mathrm{f}(\mathrm{g}(\mathrm{x}))$
11. $(\mathrm{g} \circ \mathrm{f})(\mathrm{x})$

If $f(x)=3 x-5$ and $g(x)=x^{2}$,
13. If $f(x)=-9 x-9$ and $g(x)=\sqrt{x-9}$, find $(f \circ g)(3)$
13. find $(f \circ g)(10)$
$f(x)=4 x-3$
Given:
14. Find its inverse.
15. Graph the function and its inverse on the same graph. (what are we looking for here)

Use composition to show that $f(x)$ and $f^{-1}(x)$ are inverses.
16.

In other words show that $f\left(f^{-1}(x)\right)$ and $f^{-1}(f(x))$ both equal x .

