Graphing a Linear Function with a Restricted Domain:

- 1) Graph the equation lightly in pencil.
- 2) Use the restricted domain to determine which part of the line should stay and which part of the line should be erased.
 - If the domain has x between two numbers, the graph will be a line segment (no arrows). Example: $-1 \le x \le 2$
 - If the domain has x ≥ a number or x ≤ a number, the graph will be a ray (arrow on one end). Example: x ≥ 0
- 3) Write the range in set builder notation.

Problem: Refer to the graph on the right.

Write the domain in which the function is/has:

- a) increasing
- b) decreasing
- c) positive
- d) negative
- e) relative min and relative max

Name:	Date:	Period:
COMPOSITE FUNCTION WORKSHEET <u>Directions</u> : Show all work for credit. Work must be neat and answer must be circled.		
For 1-9: Let $f(x) = 2x - 1$, $g(x) = 3x$, and $h(x) = x^2 + 1$. Compute the following:		
1. f(g(-3))	2. f(h(7))	3. (g°h)(24)
4. f(g(h(2)))	5. h(g(f(5)))	6. g(f(h(-6)))
7. f(x + 1)	8. g(3a)	9. h(x – 2)

For 10-11: Let f(x) = -3x + 7 and $g(x) = 2x^2 - 8$. Compute the following:

10. f(g(x))

11. (g°f)(x)

12. If
$$f(x) = 3x - 5$$
 and $g(x) = x^2$,
find $(f \circ g)(3)$
13. If $f(x) = -9x - 9$ and $g(x) = \sqrt{x - 9}$,
find $(f \circ g)(10)$

$$f(x) = 4x - 3$$
 Given:
14. Find its inverse.

15. Graph the function and its inverse on the same graph. (what are we looking for here)

16. Use composition to show that f(x) and $f^{-1}(x)$ are inverses. In other words show that $f(f^{-1}(x))$ and $f^{-1}(f(x))$ both equal x.