Direct Variation

The variable y varies directly as x if there is a nonzero constant k such that y $=k x$. The equation $\boldsymbol{y}=\boldsymbol{k x}$ is called a direct variation equation and the number k is called the constant of variation.
*There are many situations in which one quantity varies directly as another:

- an employee's wages vary directly to the number of hours worked
- the amount of sales tax varies directly to the total price of the merchandise

y varies directly to x

I nverse Variation

An inverse variation is a function that is defined by an equation in the following form: $x y=k$ where k is a nonzero real-number constant.
*There are many situations in which one quantity varies indirectly as another:

- as the rate increases, the time decreases when traveling a set distance.
- the volume of a gas in a container decreases as the pressure increases and the temperature remains constant.

Consider the following expressions:

$$
\begin{aligned}
& x y=k \\
& y=\frac{k}{x} \\
& y=k \cdot \frac{1}{x} \quad \text { Another way to write } \frac{k}{x} \text { is } k \cdot \frac{1}{x} .
\end{aligned}
$$

Thus, y is directly proportional to the multiplicative inverse of $x, \frac{1}{x}$.

Example 1: Find the constant of variation (k), and the direct-variation equation, if y varies directly as x and $y=-72$ when $x=-18$.

Step \#1: Replace x and y with the given values.

$$
\begin{aligned}
y & =k x \\
-72 & =k(-18) \quad y=-72, \quad x=-18
\end{aligned}
$$

Step \#2: Solve for k.

$$
\begin{aligned}
\frac{-72}{-18} & =\frac{k(-18)}{-18} \quad \text { Divide both sides by }-18 . \\
4 & =k
\end{aligned}
$$

Step \#3: Replace k in the direct variation equation.

$$
\begin{aligned}
& y=k x \\
& y=4 x
\end{aligned}
$$

Example 2: Each day Michael roller blades for exercise. When traveling at a constant rate, he travels 4 miles in about 20 minutes. At this rate, how long will it take Michael to travel seven miles?

To solve:
First, find a direct variation equation that models Michael's distance as it varies with time using $d=r t$.

Distance (d) varies directly as (t) and rate (r) is the constant of variation.

$$
y=k x \rightarrow d=r t
$$

Step 1: Find the constant of variation (r).

$$
\begin{aligned}
& d=r t \\
& 4 \text { miles }=r(20 \text { minutes }) \quad d=4 \text { miles, } t=20 \text { minutes } \\
& \frac{4 \mathrm{mi}}{20 \mathrm{~min}}=\frac{r(20 \mathrm{~min})}{20 \mathrm{~min}} \quad \quad \text { Divide both sides by } 20 \text { minutes. } \\
& r=\frac{4 \mathrm{mi}}{20 \mathrm{~min}}=\frac{1 \mathrm{mi}}{5 \mathrm{~min}} \text { or } \frac{1}{5} \text { mile per minute }
\end{aligned}
$$

Step 2: Write the direct variation equation.

$$
\begin{array}{ll}
d=r t & r=\frac{1}{5} \\
d=\frac{1}{5} t
\end{array}
$$

Now, use the direct variation equation to solve the problem.

Step 3: Apply the direct variation equation.

$$
\begin{array}{ll}
d=\frac{1}{5} t & \\
7=\frac{1}{5} t & \text { Substitution }(d=7 \text { miles }) \\
(5) 7=(5) \frac{1}{\not p} t & \text { Multiply both sides by } 5 . \\
35=t &
\end{array}
$$

Thus, at the rate of 4 miles in 20 minutes, it will take Michael 35 minutes to travel seven miles.

The function above is graphed below. Study the graph carefully. As t increases, d increases.

For example:
When t is $5, d$ is 1 .
When t increases to $10, d$ increases to 2 .
When t increases to $35, d$ increases to 7 .

*Note: the graph is linear.
*This graph was created on a graphing calculator, causing pixelation of the straight line. Thus, a straight red line was added to show the true appearance of the linear graph.

Example: Examine the following function: $x y=30(k=30)$. What are some values for y that correspond to x ?

The given function is graphed below. Study the graph carefully. As \boldsymbol{x} increases, y decreases.

$$
x y=30 \quad \rightarrow \quad y=\frac{30}{x} \quad \rightarrow \quad y=\frac{1}{x} \cdot 30
$$

For example:
When x is $1, y$ is $30 \ldots(1,30)$.
When x increases to $2, y$ decreases to $15 \ldots(2,15)$.
When x increases to $10, y$ decreases to $3 \ldots(3,10)$.
When x increases to $20, y$ decreases to $11 / 2 \ldots(20,1.5)$.

*Note: the graph is nonlinear.

