Graphical Behavior of Functions

As part of exploring how functions change, it is interesting to explore the graphical behavior of functions.

Increasing/Decreasing

A function is increasing on an interval if the function values increase as the inputs increase. More formally, a function is increasing if $f(b)>f(a)$ for any two input values a and b in the interval with $b>a$. The average rate of change of an increasing function is positive.

A function is decreasing on an interval if the function values decrease as the inputs increase. More formally, a function is decreasing if $f(b)<f(a)$ for any two input values a and b in the interval with $b>a$. The average rate of change of a decreasing function is negative.

Example 7

Given the function $p(t)$ graphed here, on what intervals does the function appear to be increasing?

The function appears to be increasing from $t=1$ to $t=3$, and from $t=4$ on.

In interval notation, we would say the function appears to be increasing on the interval $(1,3)$ and
 the interval $(4, \infty)$

Notice in the last example that we used open intervals (intervals that don't include the endpoints) since the function is neither increasing nor decreasing at $t=1,3$, or 4 .

Local Extrema

A point where a function changes from increasing to decreasing is called a local maximum.

A point where a function changes from decreasing to increasing is called a local minimum.

Together, local maxima and minima are called the local extrema, or local extreme values, of the function.

Example 8

Using the cost of gasoline function from the beginning of the section, find an interval on which the function appears to be decreasing. Estimate any local extrema using the table.

t	2	3	4	5	6	7	8	9
$C(t)$	1.47	1.69	1.94	2.30	2.51	2.64	3.01	2.14

It appears that the cost of gas increased from $t=2$ to $t=8$. It appears the cost of gas decreased from $t=8$ to $t=9$, so the function appears to be decreasing on the interval $(8,9)$.

Since the function appears to change from increasing to decreasing at $t=8$, there is local maximum at $t=8$.

Example 9

Use a graph to estimate the local extrema of the function $f(x)=\frac{2}{x}+\frac{x}{3}$. Use these to determine the intervals on which the function is increasing.

Using technology to graph the function, it appears there is a local minimum somewhere between $x=2$ and $x=3$, and a symmetric local maximum somewhere between $x=-3$ and $x=-2$.

Most graphing calculators and graphing utilities can estimate the location of maxima and minima. Below are screen
 images from two different technologies, showing the estimate for the local maximum and minimum.

Based on these estimates, the function is increasing on the intervals $(-\infty,-2.449)$ and $(2.449, \infty)$. Notice that while we expect the extrema to be symmetric, the two different technologies agree only up to 4 decimals due to the differing approximation algorithms used by each.

